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Abstract

To test the performance of an algorithm for an inverse problem for cases similar
to those under which experimental data is used, random noise can be added to given
simulated data. The most common way to do this is to use white noise generated by
a uniformly or normally distributed random sequence. Another possibility is to use
noise given by the so-called Rice Representation of random noise. We compare results
for these two kinds of noise.

1 Introduction

Inverse or parameter estimation problems are ubiquitous in science and engineer-
ing and there exists a huge literature on computational and theoretical issues
related to the development of computational methods for use in such problems
(see [1] and the references therein for only a fraction of this literature). Before
using associated computational algorithms with experimental data, it is common
to test efficiency (or lack thereof) on simulated “data”. It is well known that
many algorithms work perfectly well if “exact” data (simulated “data” gener-
ated by exact solutions of the physical or biological process being investigated) is
used in the algorithm (see chapter V6 in [1]). A more reasonable predictor of the
algorithms’ behavior when used with experimental data is that obtained when
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testing with “noisy” data. Hence it is desirable to add noise of some kind and
to study any proposed inverse problem algorithm for robustness in the presence
of noise. In this note we discuss and compare two different techniques for gen-
eration of noise to be employed in robustness investigations. The first involves
the so-called Rice Representation of noise while the second, which is more widely
found in the inverse problem literature, is noise produced by a random number
generator. Below we describe in some detail how each type of noise is gener-
ated and then compare their use in testing an inverse algorithm in a very simple
oscillator example.

2 Underlying Philosophy for the Rice Repre-
sentation of Random Noise

The Rice Representation is based on the noise caused by the so-called shot effect.
Shot effect noise is a typical source of noise resulting from the superposition of
disturbances which occur at random.

2.1 Shot effect

If F(1) is the effect at some point in the output circuit produced by the arrival
of an electron at the anode of a vacuum tube at time ¢ = 0, then the total effect
at time ¢ due to all electrons is given by

o0

n(t)= 3. F(t—t),

k=—00

where the kth electron arrives at time ¢;. (We assume that this series converges
and the effects of electrons add linearly).

The total effect n(t) can be expanded in a Fourier series (we consider only the
portion of n(?) lying in the interval 0 < ¢ < T') approximated by

N
2rnt
nN(t) = % + Z(aN’T cos ﬂ + pN T gin ———
n=1
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In [4] Rice argues that the limiting Fourier coefficients a2°, 6,1 < n < N,

n?"n
TN pT.N
n

where a° = limy 7100 a,”, b° = imy 10 are independent, normally
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distributed random variables. By application of the Central Limit Theorem it
follows then that the noise n(t), where n(t) = limy_ ., n'V(#) is itself distributed
normally.

Based on this, the original Rice Representation for random noise is given by

N
n(t) =Y (ay cosw,t 4 b sinw,t),

n=1

where w, = 27 f,, f.=nAf, Af=1/T. In this series we omit the term aq
since we assume without loss of generality that the mean value of n(t) is zero. The
amplitude coefficients a2°, 65,1 < n < N are assumed to be independent, nor-
mally distributed random variables with the following properties for the expected
values (we drop the oo superscripts on the a,, b, in subsequent discussions):

e Fla,) = E[b,] =0,
o Kla,b,] =0, for all n,m
] E[anam] = E[bnb ] = Uf Af5nm = g(fn)Afv

where 6,,, = 1 for m = n; 6,,, = 0 for n # m and J?n is the variance of a,, or
b,. G(f,) denotes the power spectral density of f, which is a measure for the
power of n(t) concentrated at each frequency range A f wide. The noise power
spectrum G(f) is given by the sum of noise power contributions at all frequencies.
G(f) corresponds to the distribution of the variance of the random signal n(t)
over frequency.

The autocorrelation function R(7) is a measure for the dependence of the
random variables. One way of representing the autocorrelation function is given

by
R = lm — e n(t + 7)dt.
(7) ! / /T/z ™)t

From this representation we can immediately derive some distinguishing prop-
erties of the autocorrelation function:

e R(7) is an even function, i.e., R(7) = R(—7).

e |R(7)] < R(0), i.e., the average product is maximal if n(t) is multiplied by
itself.

e R(0) is the average value of n*(¢). This value is the average power of n(¢)
and represents the variance of n(t). To get an idea of the physical meaning of
“power” we have to think of n(t) as a current measured in volts or amperes.
Then n?(t) is the instantaneous power in watts dissipated in a 1-ohm resistor

fed by n(t).



The autocorrelation function and the power spectrum form a pair of Fourier
transforms and are given as follows:

G(f) = /_ 0; R(r)e dr,

R(f) = /_O; G(r)e " df, w =2/,

Therefore, knowledge of one of these two functions is sufficient to easily com-
pute the missing one.

2.2 Sampling Theorems

In order to reproduce a signal without loss of information one condition con-
cerning the spacing between the sample points has to be fulfilled. The Sampling
Theorems tell us how to choose these intervals. We distinguish between the
frequency and the time domain.

Sampling Theorem in the frequency domain: If a signal z(¢) is limited in time,
i.e., z() is nonzero only within —=7'/2 <t < T'/2 and zero outside this interval,
then the maximal size of the intervals between the sampling points to assure
a signal without loss of information is given by 1/7 Hz. This interval on the
frequency scale is called the “Nyquist cointerval”.

Sampling Theorem in the time domain: If a signal z(t) is restricted to a
frequency band of bandwidth B Hz, i.e., the signal is nonzero only within this
band and zero outside, then the maximal spacing between any two sampling
points for a signal without loss of information is given by 1/2B sec on the time
scale. This interval on the time scale is called the “Nyquist interval”.

2.3 Rice Representation for limited bandwidth

This representation suggested by Bendat in [2] is motivated by the original Rice
Representation and is given by

BT
n(t) = Z(an cos wyt + by, sinwy,t),

n=1

where w, =27 f,, f.=nAf=n/T, Af=1/T, n=1,23,... and where
the amplitude coefficients a,, b, are assumed to be independent, normally dis-
tributed random variables with the properties mentioned earlier.

For a signal being band-limited to B Hz and time-limited to T secs, we obtain
(according to the Sampling Theorems) :



e In the time domain

— The Nyquist interval is 1/2B sec long;
— We have 2BT intervals in a record of length T.

Therefore, we need 2BT independent numbers to completely determine the
signal (one in each interval).

e In the frequency domain

— The Nyquist cointerval is 1/T Hz wide;
— We have BT cointervals in a band of width B.

Again, we need 2BT independent numbers to completely determine the
signal (two in each cointerval).

Since the sampling rate for the Rice Representation as suggested by Bendat
fulfills the Sampling Theorem of the frequency domain, this method can be ap-
plied to generate band-limited white noise. (We have 2 random variables a,, b,
in each cointerval 1/7" Hz wide).

Characteristics of band-limited white noise are

e Flat power spectrum over — B < f < B;
e Power spectrum = 0, for |f| > B.

We wish to emphasize that the formal Rice Representation (with the inherent
independence assumptions) can be rigorously justified only in the limiting case of
white noise. As mentioned earlier the power spectrum for white noise is constant
over the entire frequency spectrum. Only in this case do the Fourier coefficients
ay, b, become completely independent. This situation, however, is physically
inadmissible, since it implies infinite power of the signal (i.e., [0 G(f)df). In
real situations we are restricted to finite power. Therefore, we usually think of
white noise having a flat power spectrum over the considered, limited frequency
range. Only in the limiting case of white noise does the correlation function equal
a Dirac Delta function indicating that the coefficients are completely independent,
no matter how small are the intervals between the sample points.

3 Typical Generation of a Noise Signal Using
the Rice Representation

Henceforth, we will denote noise generated as described below by RICEnoise.
Using the MATLAB routine “randn(N)” which generates a normally distributed
random sequence of length N with mean 0.0 and variance 1.0, we generated 2



normally distributed random sequences a(0,0?),5(0,0%) for a specified . In
MATLAB this can be done by the simple commands

a =randn(N)* o, b=randn(N)*o.

For a specified number of time points ¢,0 < ¢ < T, the RICEnoise is then
computed as explained in Section 2 by

N
RICEnoise(t) = Z(a(n) cos wyt + b(n) cos wyt),

n=1

where w, =27 f,, f.=nAf, Af=1/T. Here a(n) and b(n) correspond to
a, and b,, respectively, in Section 2. Note that since it is not possible to generate
RICEnoise with a certain variance we had to fix one o for the a’s and b’s, which
is in contrast to the original Rice Representation where the a,’s and b,’s have
different o,’s. 1t is justified to do this, since we know that the limiting Fourier
coefficients in the Rice Representation are independent, normally distributed
random variables. From this it follows that the RICEnoise is distributed normally
(with an unknown variance, though).

For a band-limited signal generated by the Rice Representation we chose
T = 10 secs and B = 5 Hz, and we sampled N = 200 points. In order to
obtain noise of magnitude 10% through the Rice Representation we made some
experiments in MATLAB. It turned out that by taking a standard deviation
o = 0.0075 for the random coefficients a(n), b(n) we obtain RICEnoise of 10%
magnitude. The generated RICEnoise, its power spectrum and its correlation are
shown in Fig. 1 and Fig. 2, respectively. The power spectrum for the RICEnoise
(see left graph in Fig. 2) is flat as expected for white noise. Fig. 2 also clearly
exhibits the band-limitation. The correlation function (see right graph in Fig. 2)
exhibits the typical peak at ¢ = 0, where the correlation of RICEnoise(0) with
itself is measured. As time increases the correlation, of course, decreases.

volts

Figure 1: RICEnoise
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Figure 2: Power spectrum and correlation of RICEnoise

4 An Alternative Noise Generation Technique:
Use of a Simple Random Sequence

In this section we shall describe generation of noise that we shall refer to as
RNGnoise. Generating RNGnoise and passing it through a filter are frequently
used approaches.

In order to obtain RNGnoise of magnitude 10% a random sequence with
standard deviation o = 0.05 and mean g = 0 was generated (N = 200 sample
points). This is based on the fact that the choice of o = 0.05 results in a normal
distribution having 95% of its values in [—20, 20],i.e.,in [—0.1,0.1]. As explained
above, in MATLAB this simply can be done by using the MATLAB random
number generator “randn”. We obtain a sequence of N independent, normally
distributed random numbers with the specified o by

RNGnoise = randn(N) * o.

The RNGnoise is shown in Fig. 3. Its corresponding power spectrum and corre-
lation function are given in Fig. 4.

RNGnoise is white noise with a flat power spectrum over a certain frequency
range. Typical plots of a white noise power spectrum and correlation function are
given in Fig. 4. Note that due to the time limitation of the signal the correlation
function no longer equals a Dirac function, but the samples are still statistically
independent, which is different from RICEnoise. Signals with a specified finite
bandwidth are usually obtained by passing white noise through an appropriate
filter. The resulting noise is so-called colored noise with a non-flat power spec-
trum. In this case, however, the samples are no longer independent.

As we have said, the power spectrum of the RNGnoise is flat over the entire
frequency range, which is typical for white noise (see left graph in Fig. 4). The
correlation function of the RNGnoise (see right graph in Fig. 4) exhibits typi-
cal white noise behavior as well. We observe one peak at time t=0, where the
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Figure 4: Power spectrum and correlation of RNGnoise

correlation of the random variable with itself is measured, which is, of course,
maximal. After that the correlation decreases rapidly towards zero, since the
samples generated by the random number generator are independent and nor-
mally distributed.

5 Corrupting a Signal With Noise

In the following we investigate the effect of noise on a signal. We compare the
results for a signal corrupted by RICEnoise with one corrupted by RNGnoise.
We distinguish between adding relative and absolute noise to a signal. The usual
approach to corrupt a signal with relative noise is given by

NsignalRel = signal * (1+4noise).
If the signal is to be corrupted with absolute noise, one uses
NsignalAbs = signal + noise.

Above, “NsignalRel” and “NsignalAbs” are the noisy signals. “NsignalRel”
denotes the signal corrupted by relative noise, whereas “NsignalAbs” denotes the
signal corrupted by absolute noise.
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Figure 6: Signal+10% RICEnoise

The signal we used was given by
z(t) = e " xsin(2nt), 0<t<10.

Plots of the signal and its power spectrum are given in Fig. 5. The disturbed
signals are shown in Fig. 6 and Fig. 7. In the left graph of Fig. 7, where we added
10% relative RNGnoise, almost no difference to the undisturbed signal is visible.
This situation changes if we add 10% of absolute RNGnoise, which can be seen
in the right graph of Fig. 7. The disturbances are, as expected, very strong in
regions where the signal is almost zero. A similar situation can be observed, if
we corrupt the signal with RICEnoise (see Fig. 6).

Whereas there is no big difference visible between the signals disturbed by the
RICEnoise and signals disturbed by the RNGnoise (see Fig. 6 for the RICEnoise
and Fig. 7 for the RNGnoise), we can observe differences in their power spectra,
as expected. This can be seen by comparing Fig. 8 for the RICEnoise to Fig. 9
for the RNGnoise.
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6 Solution of an Inverse Problem

To further investigate and illustrate the differences between RNGnoise and RI-
CEnoise we used both kinds of noise to corrupt data used to solve an inverse
problem. For more information about inverse problems and parameter estima-
tion we refer to [1]. The problem we considered is given by

I+ct+kx=0, (1)

subject to initial conditions #(0) = 1 and #(0) = 0. For values ¢ = 0.5 and
k = 1.3 the exact solution to this problem is given by

z(t) = e %% (cos 1.1124¢ 4 0.2247 sin 1.1124¢).

For the inverse problem the parameter vector is given by ¢ = (¢, k)T. We
chose N = 15 and used the exact solution to get simulated data z(¢;),1 < <
N,0 < t; <10 for ¢=0.5 and k=1.3. The inverse problem, where we want to
estimate the values ¢ and k for the parameter vector ¢ is now stated as follows:

Find ¢ € ) such that

where () is a set of admissible parameters and z(%;;¢) are forward solutions of
the differential equation (1) obtained by an ODE solver (we used the MATLAB
routine “ode23”).

In the following numerical experiments we took o = (2.6,5)7 as starting value
for the inverse problem. In the cases where we corrupted the given simulated data
with noise to get situations similar to those where experimental data is used, the
magnitude of the noise was given by 10%, i.e., we generated noise as explained
in Section 3 and Section 4. The values we obtained for ¢ after solving the inverse
problem with different data are summarized in Table 1.

Fig. c k

no noise added to data 10 0.4973 | 1.3002
data=data(1+RICEnoise) | 12(left) 0.4991 | 1.3062
data=data+RICEnoise 12(right) | 0.5108 | 1.3013
data=data(1+RNGnoise) | 13(left) | 0.5002 | 1.3077
data=data+RNGnoise 13(right) | 0.4647 | 1.2780

Table 1: Results for the inverse problem

11
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Figure 11: RICEnoise and RNGnoise

After having solved the inverse problem we used the solutions to solve the
forward problem corresponding to the optimal parameter values. The results are
given in the following figures. The exact solution is drawn by a dotted line, the
forward solution is given by a solid line and the given data is indicated by stars.

The solution for the case where the simulated data was not corrupted with
any noise, is given in Fig. 10.

Fig. 12 shows the forward solutions when the given data was corrupted with
RICEnoise. The RICEnoise we used is shown in the left graph of Fig. 11. The
forward solution is almost exact if relative RICEnoise is added to the simulated
data (see left graph in Fig. 12). If absolute RICEnoise is added small differences
between the exact solution and the forward solution are observed, which can be

12
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Figure 12: Results for data corrupted with 10% RICEnoise

Forward solution with ¢=0.50, k=1.31 Forward solution with ¢=0.46, k=1.28
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Figure 13: Results for data corrupted with 10% RNGnoise

seen in the right graph of Fig. 12.

The RNGnoise we used is shown in the right graph of Fig. 11. The results
we obtained when we added this noise to the given simulated data are shown
in Fig. 13. We find results similar to those we obtained for RICEnoise. The
solution is almost exact if we add relative RNGnoise, but we again observe small
differences between the forward solution and the exact solution when we add
absolute RNGnoise to the given data.
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Figure 15: Power spectrum and correlation of RICEnoise2

7 Example 2: Use of a Different Package to
Generate Noise According to Rice

The same investigation we performed in the previous sections was then carried out
with RICEnoise generated by code provided by members in the Mathematical
Products Division at Brooks Air Force Base in San Antonio. The RICEnoise
generated by this code will subsequently be denoted by RICEnoise2. The main
difference in the generation of RICEnoise as done in Section 3 and RICEnoise2
lies in the use of a different random number generator. In this paper we shall not
give any implementation details of this package. The generated RICEnoise2 is
shown in Fig. 14. The corresponding power spectrum and its correlation function
are given in Fig. 15. The power spectra of RICEnoise and RICEnoise2 are very
similar, whereas the correlation of RICEnoise2 is much higher than the correlation
of RICEnoise (compare Fig. 15 to Fig. 2). The effects of corrupting the signal
we used in Section 5 with RICEnoise2 are shown in Fig. 16 and Fig. 17. Almost
no difference can be observed between RICEnoise2 and RICEnoise.

14
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Figure 17: Signal+10% RICEnoise2 (power spectra)

We also solved the inverse problem described in Section 6 for data affected
by RICEnoise2. The results of the inverse problem are given in Table 2. The
parameter values summarized in Table 2 were then used to solve the forward
problem. The data was corrupted with the RICEnoise2 shown in Fig. 18. As for
RICEnoise and RNGnoise the solution is almost exact if relative RICEnoise?2 is
added to the given data, and differs a little from the exact solution if absolute
RICEnoise2 is added. These results are shown in Fig. 19.

Fig. c k
data=data(1+RICEnoise2) | 19(left) 0.5080 | 1.2998
data=data+RICEnoise2 19(right) | 0.4643 | 1.3132

Table 2: Results for the inverse problem using RICEnoise2
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Figure 19: Results for data corrupted with 10% RICEnoise2
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& Conclusion

The Rice Representation suggested by Bendat can be used to generate band-
limited white noise. We can, though, only limit the signal in the frequency space,
but it is not possible to control the amplitudes of the noise signal through limited
bandwidth. To obtain RICEnoise with a certain variance, one has to follow the
steps described in Section 3. If we solve the inverse problem corrupting the given
data with both kinds of noise we obtain similar results. We do not recognize any
advantage in using RICEnoise.

Generating RICEnoise is more complicated than generating RNGnoise. The
Rice Representation appears to be a very nice tool to derive some statistical prop-
erties of random noise algebraically. For practical purposes, however, especially
when dealing with the time domain it becomes rather complicated. This, and
the fact that the Fourier coefficients a,, b, are only independent in the limiting
case of white noise, are possible reasons why this representation is not used very
often in the engineering sciences.
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